The aim of the present study was to assess the contribution of endogenous cannabinoids in the protective effect of ischemic preconditioning on the endothelial function in coronary arteries of the rat. Isolated rat hearts were exposed to a 30-min low flow ischemia (1 ml/min) followed by 20-min reperfusion, after which the response to the endothelium-dependent vasodilator, serotonine (5-HT), was compared with that of the endothelium-independent vasodilator, sodium nitroprusside (SNP). In untreated hearts, ischemia-reperfusion diminished selectively 5-HT-induced vasodilatation, compared with time-matched sham hearts, the vasodilatation to SNP being unaffected. A 5-min zero-flow preconditioning ischemia in untreated hearts preserved the vasodilatation produced by 5-HT. Blockade of either CB1-receptors with SR141716A or CB2-receptors with SR144528 abolished the protective effect of preconditioning on the 5-HT vasodilatation. Perfusion with either palmitoylethanolamide or 2-arachidonoylglycerol 15 min before and throughout the ischemia mimicked preconditioning inasmuch as it protected the endothelium in a similar fashion. This protection was blocked by SR144528 in both cases, whereas SR141716A only blocked the effect of PEA. The presence of CB1 and CB2-receptors in isolated rat hearts was confirmed by Western blots. In conclusion, the data suggest that endogenous cannabinoids contribute to the endothelial protective effect of ischemic preconditioning in rat coronary arteries.